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The proof of Theorem 2 published in [1] contains a mistake, kindly pointed out
by Nicolas Waldburger.

The exact error is the following: to bound the norm of set M, a configuration
C ∈ M is considered where C(q) ≤ v(q) + N ′,∀q for some N ′. A configuration
CN is then defined such that CN (q) = min(C(q), v(q) + N) for all q with the
N given by Theorem 1. The proof then states that CN ∈ JθKN , which is only
possible if CN (q) ≥ v(q)+N for all q. This is wrong because C(q) may be smaller
than v(q) +N on some q, entailing CN (q) < v(q) +N and CN /∈ JθKN .

The results of the original paper up until Theorem 2 remain valid. We are cur-
rently working on a solution. Until it is found, we put below the part of Theorem
2 that still holds, which states that counting sets are closed under reachability.
We also give a reduction from cube-reachability to unbounded initial cube reach-
ability. Since unbounded initial cube reachability is decidable in PSPACE [2], this
shows that cube-reachability is in PSPACE, which was the result of Theorem 4
now proved in another way.

Theorem 1 (Counting sets are closed under reachability). Let C be a
cube. Then post∗(C) is a counting set. The same holds for pre∗ by using the
given RBN with reversed transitions.

Proof. We start by defining a counting set M of configurations, which we will
then prove to be equal to post∗(C). Given a symbolic configuration θ of post∗(∆C),
we define the set min(θ, C) to be the set of configurations C ∈ [[θ]] such that C
is minimal for the order �θ over the configurations of post∗(C), i.e.

min(θ, C) = min
�θ
{C ∈ [[θ]] | C ∈ post∗(C)}

We can now define M to be the following set

M =
⋃

θ∈post∗(∆C)

⋃
C∈min(θ,C)

CθC ,

where CθC is the cube C(C,S) for S such that θ = (v, S). SinceM is a finite union
of cubes, it is a counting set.

We show that post∗(C) ⊆ M. Let C ∈ post∗(C). There exists C0 ∈ C such

that C0
∗−→ C, and there exists θ0 ∈ ∆C such that C0 ∈ [[θ0]]. Applying Lemma
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1, we obtain the existence of θ ∈ post∗(θ0) ⊆ post∗(∆C) such that C ∈ [[θ]]. Now,
there exists a configuration C ′ ∈ min(θ, C) such that C ′ �θ C. By definition of
CθC′ , C is in CθC′ and thus in M.

Now we show that M⊆ post∗(C). Let C ∈ M. By definition, there must be
a symbolic configuration θ ∈ post∗(∆C) and a configuration C ′ ∈ post∗(C) such
that C ′ �θ C. By the Compatibility Lemma (Lemma 3), C is in post∗(C) as
well.

This result also holds for pre∗(C). IfR = (Q,Σ,R) is the given RBN, consider
the “reverse” RBN Rr, defined as R = (Q,Σ,Rr) where Rr has a transition
(q, ?a, q′) for ? ∈ {!, ?} iff Rr has a transition (q′, ?a, q). Notice that Rr is still
an RBN and that post∗(C) in R is equal to pre∗(C) in Rr.

This is enough to show the closure theorem that followed Theorem 2 in
[1], using also that counting sets are closed under boolean operations and that
counting sets are finite unions of cubes.

Corollary 1 (Closure). Counting sets are closed under post∗, pre∗ and boolean
operations.

Now we present the reduction from cube-reachability to unbounded initial
cube-reachability which will allow us to conclude like Theorem 4 of our paper [1]:

Theorem 2. Cube-reachability is PSPACE-complete for RBN.

Recall: in [2], the authors define a sub-class of the cube-reachability problem,
which we call the unbounded initial cube-reachability problem. More precisely,
the sub-class considered in [2] is the following: We are given an RBN and two
cubes C = (L,U) and C′ = (L′, U ′) with the special property that L(q) = 0 and
U(q) ∈ {0,∞} for every state q. We then have to decide if C can reach C′. This
problem was shown to be PSPACE-complete ([2], Theorem 5.5).

Reduction Let P = (Q,Σ, δ) be an RBN and C0, C1 two cubes; (P, C0, C1) is our
instance of cube reachability. We assume all components of C0 are of the form
0 ≤ q <∞ or aq ≤ q < bq.

We show that we can do this without loss of generality. LetNZ(C) denotes the
set of states q such that a ≤ q <∞ with a > 0 in C. We construct (P ′, C′0, C′1) such
that NZ(C′0) is empty and (P ′, C′0, C′1) is a positive instance of cube-reachability
if and only if (P, C0, C1) is. Let P ′, C′0, C′1 be defined as follows: Q′ := Q ∪ {q̄ :
q ∈ NZ(C0)}, and δ′ := δ ∪ {(q̄, !e, q) : q ∈ Q} for some letter e /∈ Σ. Let
C′0 :=

∧
q∈Q\NZ(C0) C0(q) ∧

∧
q∈NZ(C0)(q̄ = aq ∧ 0 ≤ q < ∞), and C′1 := C1 ∧∧

q∈NZ(C0) q̄ = 0.

Lemma 1. ∃γ0 ∈ C0, γ1 ∈ C1 such that γ0
∗−→P γ1 iff ∃γ′0 ∈ C′0, γ′1 ∈ C′1 such that

γ′0
∗−→P′ γ′1.
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Proof. ⇒) Take t
def
= (q̄, !e, q) until q̄ is empty, then follow the transitions of

γ0
∗−→P γ1 in P ′. ⇐) By definition of C′0 and C′1, γ′0(q̄) = aq and γ′1(q̄) = 0. Since

t is the only transition to and from q̄, we can assume γ′0
∗−→P′ γ′1 is of the form

γ′0
t−→P′ . . .

t−→P′
σ−→P′ γ′1 where t is taken aq times and σ is some sequence of

transitions not containing t. Then we set γ0(q) = γ′0(q) + γ′0(q̄) if q ∈ NZ(C0)
and γ0(q) = γ′0(q) otherwise. Configuration γ1 is obtained by taking σ in P from
γ0.

Hence, we can assume that all bounds of C0 are of the form 0 ≤ q < ∞, in
which case q is called unbounded, or aq ≤ q < bq for some bq ∈ \, in which case q
is called bounded. The bounds of C1 are denoted xq ≤ q < yq, without specifying
whether yq is ∞ or an integer. We note U(C0) the set of unbounded states and
B(C0) the set of bounded states. Let q1, . . . , qk, . . . , qn be a numbering of the
states of P such that the bounded states appear first, i.e. q1, . . . , qk are bounded
and qk+1, . . . , qn are unbounded. Intuitively, we are going to construct P ′ as k+1
copies of P. The first k copies will contain the agents that start in the bounded
states q1, . . . , qk respectively, and the last copy will contain the agents that start
in the unbounded states. The agents can receive broadcasts from other copies,
but they stay in the states of their own copy.

Construction We construct (P ′, C′0, C′1) as follows, where k is the number of
bounded states of C0: P ′ consists of k+1 copies of P denoted Pj for j ∈ {1, . . . , k+

1}. To denote the jth copy of a state qi, we will write qji and Qj as the set
{qj : q ∈ Q}. We define Uj(C0) (resp. Bj(C0)) as the set of copies in Qj of the
unbounded (resp. bounded) states in C0. We define transitions of P ′ as follows:
δ′ :=

⋃
1≤i≤k+1 δi where for all 1 ≤ i ≤ k + 1, δi := {(qi, , pi) : (q, , p) ∈ δ}.

Let C′1 be the cube defined by∧
1≤j≤k

[(0 ≤ qjj <∞)∧
∧

q∈Qj\{qjj}

(q = 0)]∧
∧

q∈Uk+1(C0)

(0 ≤ q <∞)∧
∧

q∈Bk+1(C0)

(q = 0)

For each ai ≤ qi < bi with i ∈ {1, . . . , k}, we guess mi s.t. ai ≤ mi < bi. For
each i ∈ {1, . . . , k} we guess a multiset Mi := {p1i , . . . , p

mi
i } such that (1) for all

p ∈Mi, qi can reach p in P, meaning there is a sequence of transitions of δ of the
form qi −→ p1 −→ p2 . . . −→ p where the labels do not matter; and (2) for all q ∈ Q,∑

1≤i≤kMi(q) < yq. For all q ∈ Q, let us note lq := max(xq −
∑

1≤i≤kMi, 0).
Let C′0 be the cube defined by∧
1≤j≤k

∧
q∈Qj

(q = Mj(q))∧
∧

q∈Uk+1(C1)

(lq ≤ q <∞)∧
∧

q∈Bk+1(C1)

(lq ≤ q < yq−
∑

1≤i≤k

Mi(q))

Note that yq −
∑

1≤i≤kMi(q) may be ∞. The (P ′, C′0, C′1) thus constructed is an
instance of unbounded initial cube-reachability.

Correctness Now we want to show that (P, C0, C1) is a positive instance of cube-
reachability if and only if there exists (mi)1≤i≤k and (Mi)1≤i≤k as above such
that (P ′, C′0, C′1) is a positive instance of unbounded initial cube-reachability.
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⇒) Suppose (P, C0, C1) is a positive instance of cube-reachability. Then ∃γ0 ∈
[[C0]], γ1 ∈ [[C1]] such that γ0

∗−→P γ1. For all qi ∈ B(C0), set mi := γ0(qi). Let γ′0
be such that for all qi ∈ U(C0), γ′0(qii) = mi, for all q ∈ B(C0), γ′0(qk+1) = γ0(q),
γ′0 is zero for every other state. Notice that γ′0 ∈ C′0, for C′0 defined as above. To
define γ′1, we start by proving the following lemma:

Lemma 2. Given γ0, γ1 and γ′0, if there exists a run γ0
∗−→P γ1, there exists γ′1

such that γ′0
∗−→P′ γ′1 and for all q ∈ Q,

∑
1≤i≤k+1 γ

′
1(qi) = γ1(q).

Proof. We proceed by induction on the length of the run in P. First note c0 →P
c1 →P · · · →P cm with c0 = γ0 and cm = γ1. Let us show by induction on m
that there exists a run c′0 →P′ · · · →P′ c′m with c′0 = γ′0, and at any point n,
for all q ∈ Q,

∑
1≤i≤k+1 c

′
n(qi) = cn(q). For n = 0 it is immediate. For n > 0,

let us assume that there is a run c′0 →P′ · · · →P′ c′n such that cn →P′ cn+1 and∑
1≤i≤k+1 c

′
n(qi) = cn(q) for all q ∈ Q. Let (qi, !a, qj) be the broadcast transition

from cn to cn+1. From cn, we chose one qli ∈ cn and change its state to qlj (i.e

we apply one of the transitions (qli, !a, q
l
j)). We are sure that there exists one

as
∑

1≤i≤k+1 c
′
n(qi) = cn(q). This conserve the property because in each sides

of the equality we remove one for qi and add one for qj . Now, we proceed the
same way for each (q, ?a, q′) applied between cn and cn+1. From the construction
of P ′ all these transitions appear also in each copy of P and therefore we can
construct c′n+1 such that c′n →P′ c′n+1 and

∑
1≤i≤k+1 c

′
n+1(qi) = cn+1(q) for all

q ∈ Q, which concludes the proof.

Hence, we can pick such a γ′1, such that γ′0
∗−→P′ γ′1 and

∑
1≤i≤k+1 γ

′
1(qi) =

γ1(q) for all q ∈ Q. Note that agents cannot move from one copy of P to another.
Therefore, for each i ∈ {1, . . . , k}, as there are mi agents in copy i in γ′0, there
are also mi agents in copy i in γ′1. We define Mi the multiset corresponding to
configuration γ′1 restricted to the copy i. This allows to define C′1 as above. Let
us show that γ′1 ∈ C′1. Since for every q ∈ B(C1),

∑
1≤i≤k+1 γ

′
1(qi) = γ1(q), we

have that:

xq ≤
∑

1≤i≤k+1

γ′1(qi) < yq

By subtracting
∑

1≤i≤kMi(q) we get:

lq ≤ γ′1(qk+1) < yq −
∑

1≤i≤k

Mi(q)

We can do the same reasoning for q ∈ U(C1) by considering only the lower bound.
Thus γ′1 ∈ C′1, which concludes the proof of the left to right implication.

⇐) Suppose there exists (mi)1≤i≤k and (Mi)1≤i≤k such that (P ′, C′0, C′1) is a
positive instance of unbounded initial cube reachability. We define γ0 as follows:
for all qi ∈ B(C0), γ0(qi) = γ′0(qii) and for all q ∈ U(C0), γ0(q) = γ′0(qk+1). We
now prove the following lemma:
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Lemma 3. Given γ′0, γ′1 and γ0, if there exists a run γ′0
∗−→P′ γ′1, then there

exists γ1 such that γ0
∗−→P γ1 and for all q ∈ Q,

∑
1≤i≤k+1 γ

′
1(qi) = γ1(q).

Proof. The proof is also an induction on the length of the run in P ′. As previ-
ously, note c′0 →P′ · · · →P′ c′m with c′0 = γ′0 and c′m = γ′1. We show by induction
that there exists a run c0 →P · · · →P cm with c0 = γ0 and at any point n,
for all q ∈ Q,

∑
1≤i≤k+1 cn(qi) = cn(q). For n = 0, it is immediate as γ′0 ∈ C′0.

For n > 0, let us assume that there is a run c0 →P · · · →P cn with the de-
sired property. Let (qji , !a, q

j
l ) be the broadcast from c′n to c′n+1. From cn, we

apply the transition (qi, !a, qj). We are sure that we can apply this transition as∑
1≤j≤k+1 c

′
n(qji ) = cn(qi). Now for all the receptions that occur between c′n and

c′n+1, we do the same by applying the corresponding transitions in P. Note that
this preserves the equality. We constructed a cn+1 such that cn →P cn+1 with
the desired equality, which concludes the proof.

Hence, we can pick such a γ1, such that γ0
∗−→P γ1 and

∑
1≤i≤k+1 γ

′
1(qi) =

γ1(q) for all q ∈ Q. It follows that for all q ∈ Q, xq ≤ γ1(q) < yq, and therefore
γ1 ∈ C1.

It remains to show that γ0 ∈ C0. To this end, let us notice this: for an infinite
constraint on a state qij in C′0 (with 1 ≤ i ≤ k), if there is no state qi with an

infinite constraint in C′1, then we can bound the initial constraint on qij . Indeed,

as one state qij can only reach states qi, if all the final cube is bounded on all of

these reachable states, we can bound the constraint on qij . One natural bound

is
∑
q∈Q y

′
qi where y′qi is the upper bound on the component of qi in C′1. Notice

now that for all 1 ≤ i ≤ k, there is no unbounded components for all q ∈ Qi in
C′1. Hence, for each qii , even if qii ∈ U(C′0), it holds that γ′0(qii) <

∑
q∈Q y

′
qi . In

fact, as there is no new agents during the run and as ∀qji , j 6= i, γ′0(qji ) = 0, we
have that γ′0(qii) =

∑
q∈Q y

′
qi = |Mi| (recall that copies are disjoints). Hence, for

all 1 ≤ i ≤ k + 1:

aqi ≤ γ′0(qii) < bqi

It is immediate that, for all q ∈ B(C0),

aq ≤ γ0(q) < bq

Hence, γ0 ∈ C0, which conclude the proof.

PSPACE membership. This reduction leads to a PSPACE algorithm for decid-
ing cube-reachability. Let P, C0, C1, we want to decide the if C0 can reach C1.
We guess (mi)1≤i≤k and (Mi)1≤i≤k and construct (P ′, C′0, C′1) as above. We use
the PSPACE algorithm from [2] to decide whether C′0 can reach C′1. This non-
deterministic algorithm is in PSPACE because by Savitch’s Theorem PSPACE =
NPSPACE. In [2], the authors show that the unbounded initial cube-reachability
is PSPACE-complete in the size of the input when the input is written in unary.
In fact, one can encode the symbolic configurations (v, S) (first defined in [2]) by
considering v as a vector of |Q| components which are each bounded by |Q|×‖C‖,
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where C is the input cube of the unbounded initial cube-reachability problem. As
a consequence, with the right encoding of symbolic configurations, the algorithm
presented in [2] works in polynomial space when the input is written in binary.
Thus we conclude the same for the cube-reachability problem.
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